
3OURNS®

- **Designed for Complementary Use with the BD745 Series**
- 115 W at 25°C Case Temperature
- 20 A Continuous Collector Current
- 25 A Peak Collector Current
- **Customer-Specified Selections Available**

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BD746		-50	
Collector-base voltage (I _E = 0)	BD746A	V	-70	V
	BD746B	V _{CBO}	-90	V
	BD746C		-110	
	BD746		-45	
Collector-emitter voltage (I _B = 0)	BD746A	V	-60	V
	BD746B	V _{CEO}	-80	V
	BD746C		-100	
Emitter-base voltage	V _{EBO}	-5	V	
Continuous collector current	I _C	-20	Α	
Peak collector current (see Note 1)	I _{CM}	-25	Α	
Continuous base current	I _B	-7	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	115	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	3.5	W	
Unclamped inductive load energy (see Note 4)			90	mJ
Operating free air temperature range			-65 to +150	°C
Operating junction temperature range	T _j	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L 260		°C	

- NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$. 2. Derate linearly to 150°C case temperature at the rate of 0.92 W/°C.
 - 3. Derate linearly to 150°C free air temperature at the rate of 28 mW/°C.
 - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)} = 0$, $R_S = 0.1 \Omega$, $V_{CC} = -20 V$.

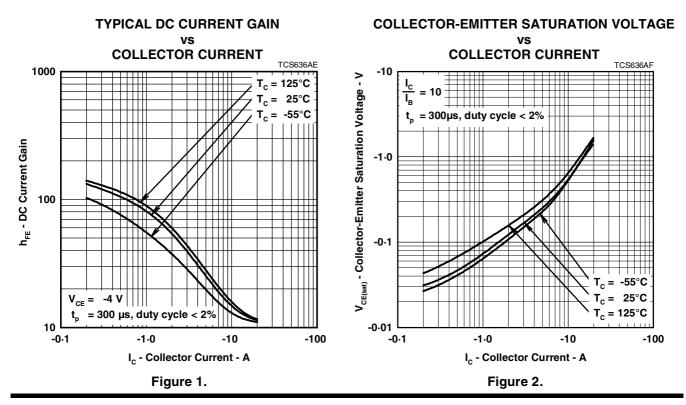
electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS				MIN	TYP	MAX	UNIT
V/DD\0F0	Collector-emitter breakdown voltage	I _C = -30 mA	I _B = 0	(see Note 5)	BD746 BD746A	-45 -60			V
					BD746B BD746C	-80 -100			•
		V _{CE} = -50 V	$V_{BF} = 0$		BD746			-0.1	
			$V_{BE} = 0$		BD746A			-0.1	
		$V_{CE} = -90 \text{ V}$			BD746B			-0.1	
	Collector cut-off	V _{CE} = -110 V	$V_{BE} = 0$		BD746C			-0.1	
I _{CBO}	current	$V_{CE} = -50 \text{ V}$	$V_{BE} = 0$	$T_C = 125^{\circ}C$	BD746			-5	mA
		$V_{CE} = -70 \text{ V}$	$V_{BE} = 0$	T _C = 125°C	BD746A			-5	
		$V_{CE} = -90 \text{ V}$	$V_{BE} = 0$	T _C = 125°C	BD746B			-5	
		V _{CE} = -110 V	$V_{BE} = 0$	T _C = 125°C	BD746C			-5	
1	Collector cut-off	V _{CE} = -30 V	I _B = 0		BD746/746A			-0.1	mA
ICEO	current	$V_{CE} = -60 \text{ V}$	$I_B = 0$		BD746B/746C			-0.1	MA
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0					-0.5	mA
	Forward current transfer ratio	V _{CE} = -4 V	I _C = -1 A			40			
h_{FE}		V _{CE} = -4 V	$I_C = -5 A$	(see Notes 5 and 6)		20		150	
		V _{CE} = -4 V	$I_{\rm C} = -20 \ {\rm A}$			5			
V	Collector-emitter	$I_B = -0.5 A$	I _C = -5 A	(see Notes 5 and 6)				-1	V
V _{CE(sat)}	saturation voltage	I _B = -5 A						-3	v
V _{BE}	Base-emitter	V _{CE} = -4 V	-	(see Notes 5 and 6)				-1	V
v BE	voltage	$V_{CE} = -4 V$	$I_{\rm C} = -20 \text{A}$					-3	
h _{fe}	Small signal forward	V _{CF} = -10 V	I _C = -1 A		f = 1 kHz	25			
16	current transfer ratio	- C							
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	$I_C = -1 A$		f = 1 MHz	5			

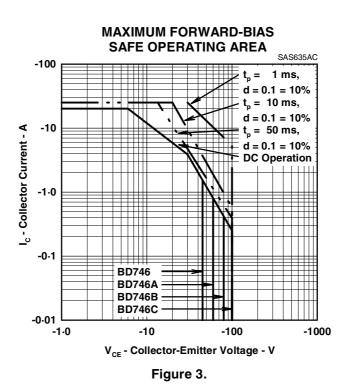
NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.1	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			35.7	°C/W


resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _d	Delay time					20		ns
t _r	Rise time	I _C = -5 A	$I_{B(on)} = -0.5 A$	$I_{B(off)} = 0.5 A$		120		ns
t _s	Storage time	$V_{BE(off)} = 4.2 V$	$R_L = 6 \Omega$	$t_p = 20 \mu s, dc \le 2\%$		600		ns
t _f	Fall time					300		ns


[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

MAXIMUM SAFE OPERATING REGIONS

PRODUCT INFORMATION

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

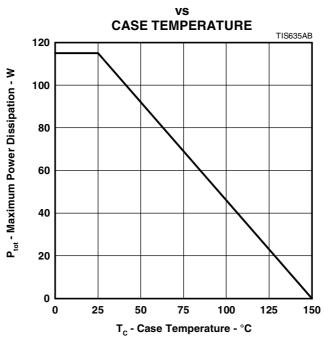


Figure 4.